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ABSTRACT 
 

The Army Game Project at the Naval Postgraduate School is utilizing Epic’s 

Unreal game engine to create a realistic first person infantry simulation.  The project 

involves both indoor and outdoor spaces, including terrain datasets larger than normally 

supported by the Epic engine.   While there has been extensive research relating to terrain 

rendering algorithms, they are unsuitable for this system due to hardware requirements, 

task limitation, or inefficient memory management. 

These limitations can be addressed by modifying the original terrain algorithm to 

include multiple levels of detail for complex terrain.  This method raises new issues with 

projected textures, transparent textures, and multi-resolution rendering; therefore the 

implementation technique includes resolution for these concerns as well.  The Epic world 

editor was also modified to enable world designers control of these levels of detail.   

Performance tests have shown that this terrain level of detail system significantly 

improves display times, thereby allowing greater terrain complexity while maintaining 

interactive frame rates.  Rendering times in environments with small terrains improved 

almost 40%, while large complex terrain environments (km2 at 1m resolution) fared even 

better. 
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I. OVERVIEW 
A. THESIS STATEMENT 

 Tailoring terrain level of detail algorithms to first person, ground following 

perspective three- dimensional virtual environments allows for visualization of more 

complex terrain while preserving interactive frame rates. 

B.  PROBLEM/MOTIVATION 

 Terrain generation and visualization is not only wide and varied but also difficult 

when the premise requires accurate representations of scenery at high frame rates with 

dynamic viewpoints. The Army Game Project (AGP) (http://wargamelab.com) is an 

ongoing endeavor that makes use of large terrain sets for its first person ground 

perspective war game. However, the large terrain sets that are required degrade 

performance, disrupting the interactive frame rates and game-play.  

 Epic’s Unreal engine serves as the underlying architecture for the project 

(http://unreal.epicgames.com). The engine maintains many desired features and facilitates 

the necessary extensibility in order to incorporate additional features. One problem with 

the current engine configuration lies in that it is not designed to handle multiple levels of 

detail in its terrain display system. Instead, the engine dictates a single terrain resolution 

to bypass possible performance disruptions or complexities of scene management. This 

method for rendering terrain does not provide the AGP with the flexibility it requires in 

order to achieve its mission. Thus, the motivation for this thesis was to provide the AGP 

with an adaptable terrain display system that will enable it to achieve its goal of an 

immersive, realistic combat game.  

C. METHODOLGY 

 With a goal of determining the best approach by which to develop an adaptable 

terrain display system, the Unreal Engine was first studied. Once the underlying 

components were understood, then the appropriate level of detail method was 

ascertained. Finally, the chosen method was integrated into the rest of the Unreal game 

engine and optimized for clear understanding. 

1. Understanding Unreal Engine 

Understanding how the Unreal engine functioned and created terrain was 

fundamental in this endeavor. C++ is the language used for the underlying graphical and 
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abstraction layer for the game. Unreal script, a Java like programming language created 

by Epic, provided all the required functionality of game-play. Though slower than C++ 

by a factor of 20, all game-play utilities reside in the Unreal script due to its usability, 

modularity and intuitive style. 

All pertinent terrain generation code exists in over 2000 lines of C++ engine code 

across two files. Epic’s terrain generation algorithm involved preprocessing a terrain 

mesh and then constant refreshes of the mesh during game runtime. As described in detail 

in the implementation chapter of this thesis, a majority of the changes were made in the 

preprocessing of the terrain mesh. 

Understanding the Unreal editor was another essential part of understanding the 

game engine for the simple fact that a majority of the terrain display code was shared for 

game-play and creating/editing terrain and maps. Understanding the functionality of the 

editor was necessary in order to create test maps. Since the game-play and editor code 

was intertwined, delineating between the two in the engine was required to ensure that 

modifications would be transparent to the level designers (map creators) during creation 

and editing. 

2. Determining Level of Detail Method 

There are a variety of terrain optimization techniques available for LOD 

management of triangular meshes. An exhaustive study of these techniques, referenced 

against the existing Unreal terrain generation algorithm, is provided in the related work 

chapter of this thesis. This study was performed in order to examine not only the 

feasibility of incorporating level of detail into the engine, but also the feasibility of 

using one of the related works as a foundation for the upgrade. 

3. Integrate Level of Detail into Unreal 

 Once the correct level of detail algorithm was determined and tested, its 

integration into the AGP was the next step. Obviously, the goal of the integration was to 

be seamless to level designers, programmers and users alike. This step involved tests for 

every map to ensure the integration did not produce any unwanted artifacts.  

4. Optimize and Modularize 

 Upon completion of the integration, further optimization was performed to ensure 

the least amount of memory usage and the quickest time to load maps. This step also 
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involved modularizing the algorithm for easy inclusion, exclusion, or replacement with 

alternate solutions.  

5. Head Turning Prediction Methods 

 An experiment was run in order to test the possibility that a prediction model 

could be discerned concerning the frequency of head turning by users during game play. 

If existent, a prediction model could be used to further optimize level of detail by loading 

terrain when required and excluding it when not necessary according to the predictive 

tendency of users. 

6. Develop and Integrate Head Prediction Algorithm 

 If a prediction model could be ascertained, then developing an algorithm for the 

prediction model was the next step. The algorithm needed to be generic in order to 

correspond to all users, and once integrated, could not degrade the performance of game 

play. Anything short of meeting those two requirements would render the algorithm 

unsuitable for inclusion into the AGP.  

D. THESIS ORGANIZATION 

 The remainder of this thesis is organized as follows: 

 Chapter II: Previous work. Chapter II provides the reader with an introduction 

into the theory behind this thesis. It also includes an analysis of related work in this field. 

 Chapter III: Architecture and design. Chapter III provides the layout for the 

architectural and design approaches taken in order to incorporate level of detail in the 

terrain generation. 

 Chapter IV: Implementation. Chapter IV provides an in-depth description of 

procedures used to implement level of detail in terrain generation. 

 Chapter V: Experiments and analysis. Chapter V provides the empirical data in 

order to support or refute the feasibility of this work. 

 Chapter VI: Head Turn Frequency Predictability. Chapter VI provide the 

results of a test for the feasibility of the predictability of head turning frequency in a first 

person-ground perspective simulation.  

Chapter VII: Conclusions and future work. Chapter VI provides a summary of 

the benefits of this work, possible future work in this area, and recommendations. 
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II. BACKGROUND & RELATED WORK 
A.  INTRODUCTION 

 This chapter provides the reader sufficient background in order to comprehend the 

contributions and limitations of this work. The concepts of terrain, level of detail, the 

existing Unreal terrain code, and predictive rendering are defined to provide a baseline to 

understand the remainder of this work. Finally, a synopsis of related works is presented to 

assist in defining the problem space. 

1. Terrain 

Terrain involves representing a type of landscape by describing a combination of 

like things such as vegetation, surface properties and 3D models (Geomantics, 2001). 

Typical terrains include rolling grass hills, mountain ranges, valleys, rivers, etc. They can 

be modeled to resemble specific places or randomly generated to be non-specific. The 

terrain examined in this thesis represents both existent and non-existent areas.  

A typical storage technique for terrain is in the use of a heightfield, which is an 

array of integers that represent heights (i.e. z value) at specific x and y coordinates that 

correspond with the index of the associated height. For example, the digital terrain 

elevation data, or DTED, saves its terrain representations in the heightfield format with 

associated headers in the files to delineate geographic location in the world (Pike, 2000). 

Keeping the terrain information as short integers stored in binary text files minimizes the 

overall storage. A brief synopsis of related terrain work can be found in the related work 

section of this chapter. 

2. Level of Detail 

Accurate terrain representations such as the U.S. Geological Survey’s Digital 

Elevation Models contain over one million points (Reddy, 2000). The time required to 

render terrain of that magnitude does not provide for smooth, real time interactive 

simulations or virtual environments. The most common method for altering the terrain 

model while maintaining its integrity is Level of Detail (LOD). 

“LOD is the technique of changing a model’s complexity based upon some 

selection criteria, such as distance form the viewpoint or projected screen size.” (Reddy, 

2000) In essence, several altered versions of the same model are created in varying 

complexity to be displayed at varying distances from the viewpoint. The goal involves 
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maintaining or speeding up rendering time by representing objects with less detail when 

far away. For example, the signs in Figure 1 below would suffice to represent the sign at 

three distances, with the right most image near the far clipping plane and the left image at 

the near clipping plane. The actual distances at which to swap the images is designer 

dependent. 

 
Figure 1. LOD example with three stop signs. The sign with “STOP” completely printed is for the 

highest level of detail on down to the sign with no lettering used for the lowest level of detail.  

 The importance of LOD in graphics intensive applications lies in the time to 

render the images per frame, and the amount of bandwidth required to transmit the 

images. These concerns must be addressed in terrain algorithms if both visually stunning 

images and practicality in speed and composition are to be met. "It seems you can't shake 

a stick in the world of terrain visualization without hitting a reference to Level of Detail 

(LOD) Terrain Algorithms." (Turner, 2000) 

 Using multiple images to represent a single object at varying perspectives is a 

very expensive ideal in terms of storage and processing. First, there is the physical 

memory required to store every single image for use in the scene. For very detailed and 

complicated models, this memory requirement could be very demanding. Second is the 

virtual memory costs required to have multiple images for quick swapping to avoid any 

lag by accessing physical memory. Finally, processing the images for intelligent caching 

requires algorithms capable of quickly determining which images need to be swapped or 

kept.  
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 Besides the expense involved with storage, rendering and transmission, another 

concern is hysteresis, or the “popping" effect. In order to speed up rendering time, many 

algorithms use different pictures representing a single object for differing distances 

between the object and viewpoint of the user. Each picture is displayed with just enough 

detail on further objects to maintain the integrity of the object. Just as a person perceives 

wrinkles and fine facial hairs, on an approaching person, the closer an object on the 

screen gets to the viewing camera, more details can be perceived, and thus required to 

accurately represent it. The popping effect occurs when detail levels are swapped in a 

manner that is noticeable to the user. Ideally the transition should be transparent to the 

user, where there are no noticeable pops, or drastic differences. So, Figure 1 would 

require additional processing to ensure the user perceives only a single stop sign no 

matter the distance from it.  

 Eliminating hysteresis from LOD transitions is essential for any algorithm that 

requires the persistence of immersion and presence. One method for eliminating 

hysteresis involves the use of geomorphs which smoothly interpolates the geometry of 

the terrain mesh in order to correct for the “popping” (Hoppe, 1996). Though the 

technique accurately applies for smooth LOD transitions at runtime, the algorithm’s 

intent was designed for a “visual flythrough simulation.” Flight simulations are not easily 

adaptable to rapid view changes of a first person, ground following application whose 

terrain mesh was preprocessed and thus not alterable during runtime.  

 Inherent in all the techniques for LOD thus far mentioned are the notions of 

discrete and continuous LOD. Discrete LOD is the creation of multiple images to 

represent the same model at different resolutions like the above stop signs. The problem 

with discrete LOD is hysteresis, which alpha LOD attempts to solve. Continuous LOD 

involves the manipulation of a model’s or terrain’s geometry as geomorphs does.  

 Discrete LOD appears to be the method that meets the stated requirements for this 

work rather than continuous LOD for a number of reasons. One reason is that continuous 

LOD involves intensive calculations for determining vertex manipulation. Another reason 

is that the modern bus in a computer is too slow to transmit the continuous changes. The 

high expense in trying to maintain a constant flow of updates as opposed to sending a 

high complex mesh only once is not conducive to be used for this work. 
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 Display lists provide a means by which to save recurring commands.  Once saved, 

the static list can be called at any time for execution. This method of caching commands 

saves compiling and execution time as code is produced only once for use in multiple 

areas or times. Small terrain sets could certainly be saved in a display list and sent to the 

graphics card each time it needs to be rendered. However, large terrain sets could not be 

handled by current memory busses all at once, and dynamic terrain would require more 

storage as once display list per resolution per piece of terrain is required. 

 One common technique in use for level of detail is alpha LOD, or alpha blending. 

Alpha blending eliminates hysteresis by transitioning between to differing layers by way 

of a gray image map. Basically, two images are superimposed along with the gray map, 

which determines which of the images is displayed and how the two are blended together 

for smooth image viewing. The only problem with the technique is that the image 

transitions are visible to the user which disrupts the immersive game-play (Nyudens, 

2001). 

 Another technique is the notion of a progressive mesh. A progressive mesh 

involves the storage of a mesh and differing representations for prioritizing the triangles 

in the mesh from a very fine representation to very simple one (Hoppe, 1996). This 

technique provides a stunning visual display when coupled with geometric morphing. 

Unfortunately, the algorithm is very cost ineffective in terms of calculations and memory 

usage. For instance, every vertex split and collapse needs to be saved. Another problem 

involves the calculations required to determine which of numerous edges to collapse 

should be the moving vertices converge to a single point in order to avoid sharp edges or 

unwanted artifacts in the terrain.  

3. Unreal Terrain  

 The terrain rendering techniques developed by Epic do not use LOD techniques. 

Instead, a pre-computed, single resolution terrain mesh is the final product rendered on 

screen that is controlled through a quad tree structure for inclusion and exclusion of 

pieces of terrain. In order to ensure smooth game-play, Epic limited its terrain resolution 

size to 256 x 256. Accordingly, no degradation in performance was experienced in any of 

Epic’s level designs. However, one goal of the AGP involved implementing large-scale 

  8



maps (1024 x 1024) with 1-meter resolution. Thus the original terrain generation 

algorithms proved to be inadequate for the AGP.  

 Epic’s terrain rendering technique does not scale precisely because the entire 

terrain is generated and rendered at a single resolution. Larger maps require the more 

polygons, which requires more rendering time, which leads to a linear degradation in 

rendering speeds. So, as map size increased, required rendering time increased and frame 

rates decreased, which in turn degraded game-play.  

 The primary reason that Epic did not include LOD in the original architecture was 

because LOD was assumed to be slow. Basically, Epic assumed that swapping between 

higher and lower resolution meshes would degrade the terrain display system enough to 

disrupt interactive game-play. This led to Epic’s explicit limited map sizes. 

 Despite the advances in graphics hardware terrain generation is still very software 

dependent. The hardware does provide stunning graphical displays but not for dynamic, 

view dependent triangle meshes and texture maps at required frame rates (Duchaineau, 

1997). Since the target audience for Epic and the AGP uses standard desktop computers 

with modern home commercial graphics cards and capabilities, the AGP must depend on 

software in order to provide interactive frame rates.  

4.   Predictive Head Movement  

Past studies regarding the elimination or reduction of the effects of system delays 

for head mounted displays involved the use of prediction (Azuma, 1995). Expanding the 

prediction idea for use in a first person, ground following environment proved very 

appealing as a possible supplement for optimizing terrain generation. The basis for the 

prediction model would be that users behave in a predictable manner, which could be 

accurately modeled. The behavior modeled would be head turning frequency. If a user’s 

propensity for head turning could be precisely modeled, an intelligent algorithm would 

efficiently cache terrain for areas that the user would tend to turn most often towards and 

exclude those areas least viewed.  

Ron Azuma investigated the feasibility of prediction for reducing the effects of 

system delays in head mounted displays (Azuma, 1995). A major portion of the study 

involved predictors in the frequency domain. The idea involved transforming head 

motion predictors into linear systems by which to adequately predict the motion of a 
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user’s head in order to efficiently decide on what needed to be rendered. The study was a 

success though not a panacea, as the results were very dependent on small prediction 

intervals and linear systems only. 

B. GAME TECHNOLOGY INTRODUCTION  

 This section introduces the reader to specific terms and language associated with 

commercial game technology. The underlying architecture for a game is a game engine. 

Typical responsibilities of the game engine include graphics, network communications, 

visibility calculations, etc. Game engines are typically not open to the public for general 

use. Obtaining the source code for research, alterations, etc., requires a license from the 

owner of the code. However, building upon a game engine without altering the 

architecture is feasible through the use of modifications, or mods.   

 A game engine in general is not modifiable without a license and/or source code, 

but provides a layer of abstraction for reuse across different applications through mods 

(DeBrine, 2000). A mod is an upper level program that interacts with a game engine for 

upgrading or changing game-play or the game environment without changing the 

underlying optimized architecture. Mods are akin to drivers that modify an operating 

system to handle new behaviors without altering the operating system itself.  

 Many commercial gaming companies develop their own script languages to 

interact with the engine. The scripting languages, like mods, use the abstraction layer 

provided by the engine for designing specific scenarios and game-play. Usually the script 

language is more intuitive than languages such as C++ and provides easier access to 

game functionality for the programmers. It also lessens the requirement for C++ builds 

which, depending on the complexity of the engine, could be very time consuming.   

C. RELATED WORK IN TERRAIN GENERATION 

 Essentially, terrain generation algorithms must meet the following goal: render 

realistic terrain in real-time for first person ground travel using minimal memory while 

minimizing hysteresis in order to preserve interactive frame rates to ensure no 

degradation in game-play for a user. This ideal was what drove many of the algorithms 

that were reviewed as part of this work. A majority of the techniques generated 

algorithms best suited for traveling above the terrain, such as flight simulators, with no 
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objects or avatars in existence in that environment. With these restrictions, the algorithms 

achieve the goal of real-time generation with relatively small memory footprints.  

 These techniques are not suitable for the problem domain of this thesis. The 

environment will contain buildings, trees, weapons, packs, vehicles, etc., as well as 

avatars representing other users. The problem domain is based on a first person ground 

perspective which many of the studied algorithms are not suited to handle. A major 

difference between a fly-over simulation and a ground perspective simulation is that fly-

over simulations are not overly concerned with ground objects in the scene. For example, 

from a ground perspective looking at buildings, if a lower resolution terrain leaves part of 

the building over empty space, it will be very noticeable by the user. Whereas, a fly-over 

most probably will never notice any difference as the user is always looking down at the 

terrain and buildings without any chance of noticing the void below the building.  

 The following sections review prior terrain generation algorithms to give the user 

a clearer understanding of the problem domain. Then the merits of each topic are 

discussed as to their suitability, or lack thereof, for this project. 

 1. Triangular Irregular Networks 

 Triangulated Irregular Networks, or TINs, is a terrain generation algorithm that 

makes use of triangulated meshes to approximate surfaces for any desired level of 

accuracy. TINs make use of the Delaunay criterion, which in part ensures that no other 

vertex appears in the circumcircle of another vertex thereby avoiding sliver triangles, or 

portions of the scene left exposed by the triangular mesh. Basically TINs maintain good 

spacing between the set of points from a 2D height field map. 

 "TINs allow variable spacing between vertices of the triangular mesh, 

approximating a surface at any desired level of accuracy with fewer polygons than other 

representations." (Lindstrom, 1996) Though it uses fewer polygons and does not suffer 

from sliver triangles, TINs is not a fluid dynamic algorithm and its utilization does not 

always eliminate hysteresis. For example, TINs manipulates height field maps to 

eliminate triangles by approximating roughness and hidden details, which are 

computationally expensive operations that slow the frame rate rendering time. 

 Though TINs maintains good spacing, does not have slivers or gaps, and requires 

few polygons to maintain accurate representations, it is not a suitable solution for this 
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work. Part of the goal was for a very fast method for terrain LOD that provided 

interactive frame rates for game-play. TINs are very computationally expensive in order 

to maintain its good spacing and to determine the necessary amount of polygons to 

eliminate slivers. These computations lead to slow terrain display, which lead to slower 

frame rates.  

 2.  Quad Trees 

 The concept behind the spatial subdivision technique of quad trees is to divide 

and conquer. As illustrated in Figure 2 below, the basic idea is to continuously subdivide 

the block into four smaller blocks until the desired level of detail is achieved, where 

higher numbers of divisions equates to higher level of detail. A minimum level of 

division is attainable since a block will not be divided if at least one of its children is not 

radically different (different color) than any of its siblings, which would mean there is no 

requirement for more detail. This simplification in conjunction with vertex removal 

reduces the number of polygons to be rendered, provides smooth changes between levels 

of detail, and provides dynamic generation in real-time. 

 
Figure 2. Quad tree example. The overall block is subdivided evenly about regions that are dissimilar 

providing a tree structure by which to quickly traverse active nodes while bypassing inactive ones. 
Image by Peter Carbonetto, McGill University 

 In Figure 2, the top image represents the original full terrain. The bottom image 

represents two of the four quadrants in detail. Simply, as spatial blocks are broken down, 

the nodes spawn the children. Each node is then assigned a color and status for simple 
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manipulation. When the tree is traversed, if a top node is set to neutral, then its children 

do not need to be visited. 

 Though it is a faster algorithm than TINs, and does provide far more dynamic 

interaction, the storage costs are significant. The main advantages of quad trees lie in the 

speed with which they can be manipulated and accessed. For example, erasing a picture 

done with quad trees is as simple as setting the root node to neutral (once one node is set 

to neutral, its descendents are all classified as such for rendering purposes), which is a 

simple manner in which to perform occlusion.  

The Unreal engine accomplishes this dynamic interaction for its terrain generation 

by culling any terrain outside of the viewing frustrum. If a node of the quadtree is not in 

the field of view of the player it is simply not rendered. All of the terrain is maintained in 

memory so that the culling and associated non-culling are seamless to the user. 

 Peter Lindstrom et al. used the quad tree design in creating their algorithm 

without the "problems" of TINs. The algorithm made use of continuous triangle binary 

tree meshes to obtain high frame rates for large output meshes. The algorithm modeled 

itself with the following criterion: 

1. Direct query ability of the mesh geometry and the components that 
describe it 

2. Dynamic re-computation of surface parameters that does not effect 
performance 

3. High frequency data, such as localized concavities, should not have a 
global effect on the model 

4. Changes to viewing parameters should have a proportional effect on 
the computations (i.e. small changes in the viewpoint should lead to 
small reactions in the complexity), thereby maintaining a constant 
frame rate. 

5. Provide bounding for loss in image quality 
 

As mentioned, Unreal does include a quad tree like method when it occludes 

terrain not in the viewing frustrum. However, despite it being memory intensive, quad 

trees could be introduced into the AGP for its terrain LOD display in some altered form. 

One requirement is the addition of an algorithm to ensure seamless terrain display 

because quad trees do not inherently check for gaps or slivers.  
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 3.  Real-time Optimally Adaptable Meshes 

 Real-time Optimally Adapting Meshes, or ROAM, is a progressive terrain 

generation algorithm that uses two priority queues and two optimization tools for 

constructing triangulated terrain meshes (Duchaineau, 1997). The algorithm centers itself 

on a split and merge strategy on binary tree triangle meshes without having to perform 

the extra checks for sliver triangles or discontinuities (cracks) like TINs or quad trees. 

 One key to ROAM is the use of a binary triangle tree structure, versus saving a 

large array of triangle coordinates. This not only saves space, but also lends to the simple 

manipulation of the mesh. In order to create a mesh approximation for a height field, 

children are recursively-added to the tree until the desired level of detail has been 

achieved. The more children present, the finer the detail for the area. Figure 3 

demonstrates the splitting of a triangle. It follows that merging would simply be the 

splitting procedure in reverse. 

 
Figure 3.  Splitting and merging of a triangle utilizing the ROAM algorithm. 

 The two optimizations involve priority queues corresponding to the split and 

merge steps. The idea for the split is to repeatedly do a forced split on the highest priority 

triangle, with a single requirement that no child's priority is larger than its parent's. The 

second queue for merging allows for a starting point at a previously optimal triangulation 

to take advantage of frame-to-frame coherence when priorities change. 
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 Overall, the algorithm makes good use of the ideas of occlusion and dynamic 

rendering. In terms of the speed required for smooth scene transitioning, the algorithm 

makes use of a time-out. That is, when a predetermined allotted frame time is about to 

expire, triangulation optimization ceases, and the scene is rendered as is. Rarely does the 

algorithm ever reach this time-out, but if/when it does the level of detail loss is very 

miniscule. The loss is minimal because the algorithm optimizes the mesh closest to the 

near clipping plane and so the non re-triangulated portion of the mesh is in the far 

distance and will be missed by the viewer. 

 The primary intent in the development of ROAM was to create a terrain 

generation algorithm for large terrain sets for use in a flight simulator. The algorithm is 

very computationally expensive. As explained earlier in this work, the differences 

between fly-over simulations and ground simulations make the two very incompatible. 

For these reasons, ROAM was not considered to be a viable solution for the requirements 

of this work. 

4. Terrain Paging 

 Terrain paging is a technique that utilizes memory as a cache store for loading 

sections of terrain in order to use large terrain sets in a simulation without the loss of 

interactive frame rates. This technique bypasses the issue of terrain sets being too large to 

store in memory all at once by managing transfers between the disk and memory, as 

terrain is required. The NPSNET project at the Naval Postgraduate School made use of 

terrain paging in order produce a “prototype 3D visual simulation systems across on 

commercially available graphics workstations” (Falby, 1993). Included in this 3D visual 

system is the requirement for large terrain sets on which multiple users could interact real 

time across a network.  

 In order to maintain realism while expanding the terrain set generated, NPSNET 

stores bounded regions of terrain in memory, which are both visible and within close 

proximity of the user’s position.  When a user approaches the edge of a boundary, the 

terrain in the opposite direction is freed from memory and the closer terrain data is paged 

into memory. The bounding box was made larger than the terrain blocks in order to avoid 

thrashing if a user were to continuously traverse between two different terrain sectors. 
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 A quad tree structure supports the requirement for rapid culling of polygons 

outside of the field of view of the user (Falby, 1993). It also supports the multiple 

resolutions of terrain used. Though quad trees require extra memory for pointers, the gain 

in only maintaining a small subset of high-resolution terrain data in memory far 

outweighs the overhead necessary for an easily traversed and manipulated data structure 

for large terrain data sets. 

 
Figure 4. NPSNETV terrain paging. As the user approached the edge of his current bounding box, 

the next box was loaded into memory ready to render when that terrain “came into view” of the user. 
The 1200 x 1200 meter bounding block eliminates any possible thrashing that a user could cause by 

continually moving back and forth across a boundary. 

D. SUMMARY 

 As stated, there exist many works that specifically address speeding up terrain 

generation. Though all of the techniques discussed have relevant concepts that can apply 

to this study, none alone answer the problem of expanding the Unreal engine to generate 

large game maps.  
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III. ARCHITECTURE & DESIGN 
 This chapter details the architecture and design of the original process as created 

for Epic’s terrain display system as well as the one designed for this work. First, Epic’s 

architecture is discussed. Following is the LOD mesh design that served as the basis for 

this work as discussed in detail in Chapter IV. Finally, the issues of scalability, mesh 

swapping and predictive head frequency motion are discussed. 

A.  EPIC’S UNREAL TERRAIN ARCHITECTURE 

 Epic’s terrain display system can be summarized with the following statement: 

“Preprocess triangular meshes. Draw terrain until the level is exited.” Embedded within 

those statements are steps such as reading from a heightfield, assigning alpha and texture 

values, and terrain collision checks that lead to a highly interactive terrain set for game-

play.  

 Figure 5 pictorially depicts the preprocessing of terrain by Unreal. A heightfield is 

first read to associate appropriate (x, y) coordinates with elevations. The related textures 

and alpha values are then added to the vertices. Triangulated meshes are created by sector 

with the complete set of layers stored in memory for rendering during game-play. Also 

assigned per sector is a bounding box that is used for quick culling via visibility tests. 

During game-play, the terrain is continuously updated every frame. Figure 6, 

shows the rendering processing beginning with the mesh creation. Prior to sending the 

terrain to the viewport, visibility checks are performed to omit any terrain not in view. 

Each sector’s bounding box is checked for visibility first. Then each layer is checked for 

visibility. If a sector and layer are visible, it is sent to a rendering interface that will 

finally render the terrain. Also included during the rendering of the terrain are various 

checks for collision, blending and occlusion are performed at every game-tick. 
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Figure 5.  Heightfield converted to x,y coordinates with associated z values. The points are then 
triangulated to create each layered mesh. The layers are then processed for final rendering. 
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Figure 6. Terrain rendering process. Render process begins with the processing of the meshes. Then 
continuously update the terrain at every frame checking for lights, collision and culling. When a level 

or the game is exited, all references to the terrain are deleted and memory freed. 
 The basis for the terrain is an Epic defined dynamic array. This “TArray”, 

composed of another Epic defined class of terrain information 

(FterrainSectorLAyerInfo), is where the entire terrain mesh is stored and kept in 

memory during the runtime of each level. During the creation of the terrain, each triangle 

vertex for each layer is assigned a z value, which is stored in the array whose index is 

defined by an x and y coordinate. When the engine renders the terrain, the array is simply 

traversed and read.  

B. LEVEL OF DETAIL MESH DESIGN 

 Triangle lists are the underlying foundation for the terrain. As portrayed in Figure 

7, the terrain is simply a large set of identical triangle boxes laid down next to one 

another. The entire terrain set is divided up into sectors with each sector made up of a 16 

by 16 group of the triangle boxes. The challenge was to alter the existing mesh to include 

LOD.  
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Figure 7. Image of terrain triangle mesh. Left side is the high resolution configuration. Right side is 
the LOD representation of the same area. 

 The first step in the design was to determine the number of lower resolutions 

required for the AGP. As discussed in detail in the implementation portion of this work, it 

was determined that only one lower level of detail was required for the AGP. However, 

as described in Chapter II, discrete LOD inherently incurs gaps and slivers in the terrain 

mesh. In order to correct for the gaps, 13 stitching layers were defined to provide 

seamless terrain from every angle. The stitching meshes were composed of high-

resolution triangle blocks with a row and/or column of stitching for alignment next to 

lower resolution meshes in order to eliminate gaps. Figure 8 displays four of the stitching 

meshes. Stitching is covered in detail in Chapter IV of this work. 

C. SCALABILITY 

 Scalability involves programming such that future modifications, alterations, or 

additions would be both intuitive and simple. Because a goal of the AGP included maps 

of varying sizes, scalability was an essential part of this work. Incorporating non-scalable 

terrain LOD would have provided the same rigid constraints of the original terrain design, 

and thus not be an asset available for the AGP to achieve its goals.  

The basic concept encompasses incorporating terrain LOD such that an indefinite 

number of LOD meshes are created in order to render vast map sizes without any 

performance reductions. In order to make the work intuitive for use in future work, no 

new architecture or design was invented. Rather, the existing terrain algorithm was 

modified and increased in order to integrate scalable terrain LOD meshes. In this manner, 

a very simple “recipe” was laid out that could be reproduced for any LOD.  
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Figure 8.  Stitching patterns. Four of the stitching images required ensuring seamless terrain from 
any angle. 

D.  MESH SWAPPING 

 As stated above, Unreal terrain involved the use of preprocessed meshes. Upon 

execution of a level, a sector sized terrain mesh was computed then stored in memory for 

use throughout game-play. During game-play, the sector sized mesh was rendered 

numerous times to cover the entire map. The rendering of the mesh was performed at 

every game time unit, thus another possible area for performance degradation. 

Modification of this existing architecture was the primary work done.  

 With terrain LOD incorporated, upon executing a level, the algorithm 

preprocessed multiple meshes at differing LODs and saved those meshes in memory. The 

LOD design implemented and integrated into the existing rendering algorithm was based 

on distance between the player and terrain sectors. Thus the farther away from a sector 

the player was a lower LOD sector mesh would be rendered for that specific sector. 

E. PREDICTIVE SWAPPING AND PAGING 

 In order to maintain a steady level of performance, predictive swapping and 

terrain paging were investigated for possible incorporation. Predictive mesh swapping 

would make the algorithm proactive versus reactive. Based upon work done by Azuma et 

al., the underlying concept involved swapping the differing LOD meshes when it made 
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sense to do so. For instance, if it were predicted that a player would only turn to the left 

90 degrees during a certain time of a game, then until just prior to that point, only low 

LOD meshes would be rendered on the players left side. This would prevent thrashing or 

unnecessary swapping of sector meshes in case a player kept crossing over a distance 

threshold to a specific sector. As discussed later in this work, the concept could be a very 

important asset if it could be implemented. 

 Terrain paging as discussed by Falby et al (Falby, 1993) and summarized above, 

greatly benefits simulations that make use of large terrain sets. Though large terrain data 

sets or maps are an option for the AGP, at the time of this work, the maps were not as 

large as those used in the work done by Falby. As such, terrain paging in its entirety was 

not included in this work.  

F.  SUMMARY 

 This chapter detailed the architecture and design of the Unreal engine and this 

work. As discussed, the Unreal architecture was kept in tact for this work with only 

additions made in order to incorporate the terrain LOD. Chapter IV provides a detailed 

summary of the implementation for the LOD system. 
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IV. IMPLEMENTATION 
 This chapter details the process taken to apply the terrain LOD design in the AGP.  

First, a walk-thru of the structure of the required functions is discussed. That is followed 

by a detailed explanation of the steps taken to produce terrain LOD. 

A. FUNCTION WALK-THRU 

 Epic makes use of numerous functions for its terrain generation algorithm to 

include functions that initialize its layers, checks for collisions, reads heightfields, etc. 

For this work, only two of the existing functions were modified to add terrain LOD, plus 

the addition of one function to make the code more readable. All other functions were 

optimized to handle the existing algorithm and the LOD technique implemented. The 

functions are illustrated in Figure 9 with respect to their locations in the rendering 

process. 

The first function modified was UpdateVertexBuffer. This function is used 

in the preprocessing of the terrain layers. Triangulation, texture and alpha associations, 

and sector bounds are performed in this function. All LOD code was added immediately 

after any high-resolution code. The center point of each sector was also calculated in this 

function during each sectors initialization. Upon exiting this function, it is not called 

again until a new level is loaded. 

A new function, CheckTotalOccluder, was added to eliminate redundant 

code that would have been added to UpdateVertexBuffer when the LOD portions 

were added. The function checks each layer per sector to ensure it is not occluded. If it is 

occluded, a false value is returned and that portion of the mesh is not triangulated for that 

layer. 
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Figure 9. Rendering process with functions.  

  The other function altered to implement terrain LOD was Render. This 

function is called every frame to send the appropriate terrain to the rendering engine. 

Rendering determination is performed per sector down to each layer. Each sectors’ 

bounds are checked to ensure they are within the viewport. If they are within the 

viewport, then each layer is checked for visibility.  If visible, its attributes are sent to the 

rendering engine. The LOD implementation added to this function involved checks for 

distance and determining which mesh to render as is discussed in section D.  

B. LAYER DECLARATION/INITIALIZATION 

 The declaration of numerous different meshes was required to ensure seamless 

terrain for the user from any angle or viewing point. A basic low-level resolution was the 

first created, followed by all necessary stitching layers to account for gaps between low 

and high resolution layers. Declarations were made in UnTerrain.h as seen in Figure 

10. All remaining layer initialization and implementation was performed in 

UnTerrain.cpp. 
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// The basic low level resolution 
TArray<FTerrainSectorLayerInfo> LowResLayers;  
 
// All stitching layers 
TArray<FTerrainSectorLayerInfo> TopLayer; 
TArray<FTerrainSectorLayerInfo> BottomLayer; 
TArray<FTerrainSectorLayerInfo> LeftLayer; 
TArray<FTerrainSectorLayerInfo> RightLayer; 
TArray<FTerrainSectorLayerInfo> TopRightLayer; 
TArray<FTerrainSectorLayerInfo> TopLeftLayer; 
TArray<FTerrainSectorLayerInfo> BottomRightLayer; 
TArray<FTerrainSectorLayerInfo> BottomLeftLayer; 
TArray<FTerrainSectorLayerInfo> SurroundTopLayer; 
TArray<FTerrainSectorLayerInfo> SurroundRightLayer; 
TArray<FTerrainSectorLayerInfo> SurroundBottomLayer; 
TArray<FTerrainSectorLayerInfo> SurroundLeftLayer; 
TArray<FTerrainSectorLayerInfo> Surround; 
 

Figure 10. Declaration of layers for LOD. 

very layer was initialized with high-resolution defaults, which included textures and 

lphamaps. This was done to ensure proper matching between adjoining layers of the 

errain images. The differences between the layers occurred during the triangulation of 

he meshes.  

.  LEVEL OF DETAIL MESH CREATION 

The method employed in the creation of the lower resolution layer was to skip 

ertices during the triangulation, thereby reducing the overall polygon count. The chosen 

ow resolution quadrupled the size of each individual higher resolution triangle block. 

igure 11 shows both a high and low-resolution layer portion of a sector block, with the 

eft image being the higher resolution.  

 
Figure 11.  Image comparison of low and high-resolution layer mesh.  Left image is high resolution. 

Determining the low resolution to use was based upon the size of the maps to be 

sed and to ensure no drastic differences in a terrain’s configuration were made. First, the 
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LOD can be scaled to any size terrain; the AGP’s large terrain maps are of a size that 

makes using more than one LOD unnecessary.  As such, creating more than one LOD 

would require more memory for storage and include more frequent mesh swaps, which 

would detrimentally invert any gain from using LOD.  

 The other reason for using only one LOD was closely tied in with size of the maps 

used for the AGP. Since the maps are not many miles in expanse, large mountains as 

backdrops could have possibly been leveled if lower LOD’s had been implemented. 

Figure 12 reveals a possibly outcome of using multiple LOD’s for mountain ranges 

where peaks are very pronounced. By eliminating numerous vertices, which a very low 

resolution would do, has the effect of flattening the peak. The effect is very pronounced 

with LOD swaps. As the player approached the mountain, the perception would be that 

the peak grows out of the flat hill.  

 
Figure 12. Hill break down. Left image is high-resolution image of mountain peak. Right image is low 

resolution where the peak is broken down completely due to its vertices being omitted. 

Due to the differing heights in vertices, terrain without any stitching layers 

exhibited gaps as are apparent in Figure 13. Stitching layers were created to compensate 

for the varying heights of the vertices being rendered. Placing the appropriate stitching 

layer next to the lower resolution layer as portrayed on the right side of Figure 12 

eliminated all gaps producing seamless terrain. 
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Figure 13. Gapped terrain. Left image is a non-stitched terrain which led to the center gapped image.  

The far right image is a stitched terrain. 

D.  DISTANCE TO SECTOR 

 The distance measurement for LOD swapping was measured from the viewpoint 

to the center of each sector. First, a center point vector was added to UnTerrain.h as 

in Figure 14. Second, the center points were initialized when the mesh was created and 

was based on the bounds of each sector. Finally, the distance from the player viewpoint 

and each sector was determined concurrently with the rendering of each sector. The 

calculated distance determined the resolution of each sector to be rendered. A 

predetermined distance was used to provide maximum terrain LOD by making only the 

closest 9 sectors to the player eligible for rendering in high-resolution. 

 One of the features in the AGP game-play is a zoom function. The zoom allows 

the player enlarge areas of interest during game-play for closer inspection. Altering the 

viewport field of view is how the zoom feature works. The terrain LOD algorithm had to 

check against the current field of view in order to display only high-resolution terrain 

whenever the zoom feature was activated. Otherwise, a zoomed in area in low-resolution 

could have some unsettling effects, such as other avatars noticeably in some terrain where 

from a distance it is not noticed.  
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CenterPoint.X=0; 
CenterPoint.Y=0; 
CenterPoint.Z=0; 
for (INT num = 0; num<8; num++){ 
 CenterPoint.X += Bounds[num].X; 
 CenterPoint.Y += Bounds[num].Y; 
 CenterPoint.Z += Bounds[num].Z; 
} 
CenterPoint.X/=8.; 
CenterPoint.Y/=8.; 
CenterPoint.Z/=8.; 
 
// calculation done per sector 
float distance = sqrt( powf( Sector->CenterPoint.X - currentX,2 ) + 
        powf( Sector->CenterPoint.Y - currentY,2 ) + 
        powf( Sector->CenterPoint.Z - currentZ,2 ) ); 

Figure 14. Center point initialization and implementation. 

E.  MESH RENDERING DETERMINATION 

 In order to eliminate redundant code and numerous function calls, a 

TArray<FTerrainSectorLayerInfo> variable was declared to maintain the 

determined resolution for rendering. The entire array was first initialized to low-

resolution and then updated every frame. The indices of the array corresponded to sector 

number and were vital for determining when to select specific stitching meshes.  

 Determining which layer to render was based upon the above mentioned distance 

and sector array. The calculated distance was first compared against a predetermined 

LODDistance constant to determine whether the sector should be high or low.  If low, 

its surrounding sectors were polled as to ascertain the appropriate mesh to render. For 

example, the TopRightLayer stitching mesh was selected if the sectors to its top and 

right were both low resolution.  

 

 

 

Enum Choice { HIGH = 0, LOW, TOP, RIGHT, BOTTOM, LEFT, TOPRIGHT, 
TOPLEFT, BOTTOMRIGHT, BOTTOMLEFT, SURROUNDTOP, SURROUNDRIGHT, 
SURROUNDBOTTOM, SURROUNDLEFT }; 

Figure 15. Enumerated type for the determination of the layer to be rendered. 
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if (SceneNode->Viewport->Actor->Pawn->ResolutionSwap) { // on/off switch for LOD for 
testing  
 if ( distance > LODDistance )  
  DrawResolution = Sector->ResolutionLevel = LOW; 
 else if ( (SecRes[CheckTop] == LOW) && (SecRes[CheckLeft] == LOW) &&   
  SecRes[CheckRight] == LOW) && (SecRes[CheckBottom] == LOW) )  
  DrawResolution = Sector->ResolutionLevel = SURROUND; 
 else if ( (SecRes[CheckTop] == LOW) && (SecRes[CheckLeft] == LOW) &&   
  SecRes[CheckRight] == LOW) )  
  DrawResolution = Sector->ResolutionLevel = SURROUNDTOP; 
 else if ( (SecRes[CheckTop] == LOW) && (SecRes[CheckRight] == LOW) &&   
  (SecRes[CheckBottom] == LOW) )  
  DrawResolution = Sector->ResolutionLevel = SURROUNDRIGHT;  
 else if ( (SecRes[CheckRight] == LOW) && (SecRes[CheckBottom] == LOW) &&  
   (SecRes[CheckLeft] == LOW) ) 
  DrawResolution = Sector->ResolutionLevel = SURROUNDBOTTOM; 
 else if ( (SecRes[CheckBottom] == LOW) && (SecRes[CheckLeft] == LOW) &&  
   (SecRes[CheckTop] == LOW) ) 
  DrawResolution = Sector->ResolutionLevel = SURROUNDLEFT; 
 else if ( SecRes[CheckTop] == LOW ) { 
  if ( SecRes[CheckRight] == LOW )  
   DrawResolution = Sector->ResolutionLevel = TOPRIGHT; 
  else if ( SecRes[CheckLeft] == LOW )  
   DrawResolution = Sector->ResolutionLevel = TOPLEFT; 
  else DrawResolution = Sector->ResolutionLevel = TOP;   
 } else if ( SecRes[CheckBottom] == LOW ) { 
  if ( SecRes[CheckRight] == LOW )  
   DrawResolution = Sector->ResolutionLevel = BOTTOMRIGHT; 
  else if ( SecRes[CheckLeft] == LOW )  
   DrawResolution = Sector->ResolutionLevel = BOTTOMLEFT; 
  else DrawResolution =  Sector->ResolutionLevel = BOTTOM; 
 } else if ( SecRes[CheckLeft] == LOW )  
  DrawResolution =  Sector->ResolutionLevel = LEFT; 
 else if ( SecRes[CheckRight] == LOW )  
  DrawResolution =  Sector->ResolutionLevel = RIGHT; 
 else  
  DrawResolution = Sector->ResolutionLevel = HIGH;
Figure 16. Distance check. Checks for resolution determination were based upon a calculated 
distance and surrounding sector resolutions. 
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switch ( Sector->ResolutionLevel ) { 
case HIGH:  

  RendSector = Sector->Layers; 
  break; 
 case LOW:  
  RendSector = Sector->LowResLayers; 
  break; 
 case TOP: 
  RendSector = Sector->TopLayer; 
  break; 
 case RIGHT: 
  RendSector = Sector->RightLayer; 
  break; 
 case BOTTOM: 
  RendSector = Sector->BottomLayer; 
  break; 
 case LEFT: 
  RendSector = Sector->LeftLayer; 
  break; 
 case TOPRIGHT: 
  RendSector = Sector->TopRightLayer; 
  break; 
 case TOPLEFT: 
  RendSector = Sector->TopLeftLayer; 
  break; 
 case BOTTOMRIGHT: 
  RendSector = Sector->BottomRightLayer; 
  break; 
 case BOTTOMLEFT: 
  RendSector = Sector->BottomLeftLayer; 
  break; 
 case SURROUNDTOP: 
  RendSector = Sector->SurroundTopLayer; 
  break; 
 case SURROUNDRIGHT: 
  RendSector = Sector->SurroundRightLayer; 
  break; 
 case SURROUNDBOTTOM: 
  RendSector = Sector->SurroundBottomLayer; 
  break; 
 case SURROUNDLEFT: 
  RendSector = Sector->SurroundLeftLayer; 
  break; 
 case SURROUND: 
  RendSector = Sector->Surround; 
  break; 
 default: 
  continue; 
}   

Figure 17.  Layer parsing selection. Once the appropriate mesh was selected, it was parsed and then 
passed through to a function for rendering. 
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F. ALPHA BLENDING 

 Alpha blending is a method utilized to smoothly blend numerous textures 

together. The alpha values are associated with each vertex in a terrain mesh. By only 

using every other vertex in the triangle mesh for the lower resolution mesh and parts of 

the stitching meshes, it was vital to choose the correct alpha blended vertices for smooth 

uninterrupted terrain.  

As Figure 18 reveals, choosing incorrect alpha vertices leads to gaps where there 

originally was a blend between two textures. The open (white) areas represent what 

should have been a smooth transition between a grass texture and a dirt texture. However, 

since some of the vertices were skipped, some of the references for blending were also 

omitted. The engine attempted to blend between all vertices whether chosen for the layer 

or not. As such, when the engine tried to blend between an existent texture on a used 

vertex and one that had been omitted, it defaulted to rendering nothing, or as in Figure 18 

empty space. The correction was to ensure the engine only referenced vertices that were 

in use to provide smooth blending as demonstrated in Figure 19.  

 
Figure 18. Alpha blending problem. Left image is the terrain during game-play. Right image is the 

same terrain in the terrain editing tool.  
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Figure 19. Corrected alpha blend for smooth transitions between textures. 

G. SUMMARY 

  This chapter detailed the Unreal-specific implementation for this thesis. This 

provides a firm basis for implementing a terrain LOD system in a similar engine type, 

namely, for an engine that uses multi-layered displacement maps with quad trees. 
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However, the ideas expressed in Chapters III and IV are valuable as a reference for 

general terrain LOD systems. Contact the MOVES Institute (http://www.movesinstitute.org) 

at the Naval Postgraduate for specifics or sample code. The following chapter provides an 

analysis of the effectiveness, image quality and speed of this implementation.  
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V. EXPERIMENTS AND ANALYSIS 
 It was essential that the newly integrated terrain LOD system render the terrain 

with at least the same quality as the original terrain system while also providing 

interactive frame rates. Testing involved viewing numerous environments, with and 

without the LOD activated, for visual display comparisons. All tests were run on a Dell 

Dimension 4100, Pentium III 1 GHz machine with 512 MB RAM running an NVIDIA 

GeForce 2 Graphics card with 32 MB of memory.  

A. DETERMINING LOD DISTANCE 

Determining the nominal distance to be stored in LODDistance was the first 

task performed. Figure 20 provides a pictorial of the distance between the player’s 

viewpoint and the center of a surrounding sector. In order to maximize the terrain LOD, 

only the nearest nine sectors to the player could be eligible to be high resolution. The 

nine include those occluded from the player’s viewport (e.g. sectors a, d, g, h, i in Figure 

20) in order to compensate for rapid rotations during game-play.  Figure 21 shows high-

resolution layers closest to the player with low resolution farther away. For game-play, 

the optimal LODDistance was left to be determined by the level designers. 

 
Figure 20. Distance to sector.  
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Figure 21. Resolution layers. 

B. IMAGE INTEGRITY 

Testing the integrity of the images was performed via human eye. For the 

purposes of this work, and for the intended goals of the AGP, it was determined that 

passing a “human eye” test of programmers and artists was a success if they deemed no 

significant or detrimental differences. Programmers, map designers and artists were 

shown a series of terrains with LOD both active and non-active to determine the image 

integrity of the LOD system. The terrains shown ranged from virtually flat terrain to very 

rugged and complex terrain. All of the subjects were frequent gamers, very familiar with 

current game technology and appearance. 

The performed task was to ensure that there were no drastic differences between 

high and low resolution meshes. Slight differences are of course inevitable, but generally 

there should be very little visual difference. The first map tested was an open grassy 

terrain with small hills, shown in Figure 22.  
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Figure 22. Open grassy map.  The left image is non-LOD terrain. The right image is LOD terrain 
with a 66% reduction in total triangle count. There is no noticeable difference between the two 

images from this viewpoint. 

From this viewing distance, Figure 22A was completely rendered in low resolution and 

was indistinguishable from the high-resolution image in Figure 22B. Cutting the total 

primitive count down by almost 100,000 triangles without noticeably altering the image 

significantly improves the baseline for level designers. That is, level designers would no 

longer have to limit the number of extra objects in a map because of the high primitive 

count. The terrain LOD savings allow for larger, more intricate maps to be rendered with 

acceptable frame rates.  

 More intricate maps involving hills and fractured terrain were chosen to test 

different aspects of the LOD algorithm. The first perspective was taken from ground level 

looking down into a town with hills in the background as in Figure 23. There are slight 

differences in the hill line to the right of the town of the integrity of the image is kept 

intact. Again, a player would never know that the right image was not the original artist 

created landscape.  
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Figure 23. Hill resolution test. Left image is high resolution. Right image is high resolution close to 
the viewpoint and low resolution LODDistance away. 

 Figures 24 and 25 involved a map with less subtle hills and peaks but more 

frequent ones. The perspective taken for Figure 24 images was above the terrain looking 

down. No differences were noted. Figure 25 was from a ground perspective. The image 

shows a slight difference along the face of the left hand cliff, as the low-resolution image 

appears more rugged. Other views of this terrain as perceived by 6 artists and 

programmers revealed harsher differences in the hills, but not so that the integrity of the 

terrain model or images were damaged.  

 

Figure 24. Fractured terrain test. Left image is high resolution. Right image is all low resolution. 
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Figure 25. Close up of fractured terrain test. Left image is high resolution. Right image is high 
resolution close to the viewpoint and low resolution LODDistance away. 

 Just as the figures above revealed, there were subtle differences in the images 

when rendered in either high or low resolution. As was expected, in flat terrains, none of 

the programmers, map designers or artists noted any differences. However, as the maps 

increased in complexity, differences were noted but none that were detrimental to the 

images integrity. What was noteworthy about the subjects was that the programmers were 

more sensitive to the differences than the artists that created the maps. In fact, two of the 

artists did not perceive any differences until they were pointed out. 

 

Figure 26. Aerial view of large map. The left image is LODDistance high resolution. The right 
image uses the terrain LOD technique. 

C. MESH TRANSITIONS 

Ensuring smooth transitions when swapping between low and high-resolution 

meshes was the next task tested. If hysteresis exists, immersion cannot possibly be 

maintained, thus leading to a disruption in game-play. An almost entirely flat map was 
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the first used to test for hysteresis. Navigating through the map depicted in Figure 27 with 

LOD activated revealed absolutely no hysteresis. The welcomed results were expected 

for a flat terrain. The real challenge involved navigating through fractured, hilly terrain 

such as in Figure 25 above.   

The map from Figure 25 was the next terrain used to test for hysteresis. As 

expected, without geomorphing and with borders between varying resolutions near to the 

viewpoint of the player, hysteresis was noticeable. In Figure 28, the highlighted portion 

of the left image was still low resolution as it was approached. Once the LODDistance 

 

Figure 27. Hysteresis test. Flat terrain revealed no hysteresis.  

threshold was met, the highlighted area swapped to high resolution and resulted in the 

right image. Though the difference was very slight, there was still a visible pop in that 

portion of the scene. However, a player involved in a chase or combat probably would 

not notice the change during game-play and not disrupt immersion. And thus, this slight 

difference was accepted as an inevitable artifact of using terrain LOD.  

Hysteresis is very distance sensitive. The closer the swap is to the near clipping 

plane and thus the user’s view especially with highly complex terrain, the more 

noticeable the swap. Conversely, the farther away the swap is from the user, the less 
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noticeable the swap.  As stated, for the purposes of game-play and to maintain 

immersion, the LODDistance was determined per map by the map designer.  

 

Figure 28. Apparent hysteresis. The left image showed a ridge low-resolution ridge being 
approached. The right image is the resulted swap to high resolution. The highlighted areas were the 

only differences noted as the entire hill was approached. 

D. FRAME RATES 

 Providing interactive frame rates through terrain LOD was a major goal of this 

work. With all the image integrity and hysteresis questions answered, testing for 

improved frame rates with LOD active was the next step. All tests were performed using 

a single viewpoint. The images were projected full screen on the monitor to allow 

maximum exposure.  

The first map tested was the flat terrain from Figure 27 above. The observed 

frame rate without LOD active was 55-56 frames per second (FPS). When LOD was 

activated, the frame rate increased to 77-78 FPS, a 28% increase.  

 The next map tested included objects and multiple textures as in Figure 29. For 

the perspective taken in Figure 29, the observed non-LOD frame rates were 25-26 FPS. 

With LOD active, the frame rates were 27-28 FPS. This increase was negligible despite 

the number of rendered terrain primitives being reduced from 27,346 to 8,582 triangles. 

The time to render the terrain decreased from 6.4 ms to 5.2 ms. The hypothesis entering 

the test was that reducing the number of polygons rendered would increase frame rates. 

This thesis failed that hypothesis in every case where the environment contained multiple 

static meshes, decoration layers, and anything other than terrain. A possible reason for the 
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lack of a more substantial increase was that the other complexities in the scene were 

limiting the effects of the LOD system.   

 

Figure 29. Frame rate test.  No change in frame rate was observed between LOD and non-LOD 
terrain. 

 The overall statistics for the tested map showed decreases in total polygon count 

though not as dramatic as the terrain counts alone. The total primitive count for the image 

in Figure 29 without LOD active was 48,643 polygons. With LOD active it was 29, 879 

polygons. The difference was completely due to the terrain. The time taken to draw all 

primitives decreased in half from over 6 ms to just over 3 ms. A negligible increase in 

frame rate in a level with complex objects as compared to the significant increase in 

terrain only, or maps with very large terrain, suggested the terrain complexity had little 

effect on frame rate. The following tests set out to prove that the terrain LOD system was 

significant. 

 Besides the first test that showed a 28% improvement, other tests with large 

terrain sets were performed to measure the LOD’s performance. The same map that 

showed no improvement was modified for the next test as in Figure 30. All objects were 
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removed from the scene leaving only the large terrain set. Table 1 reveals the differences 

between the active and non-active LOD statistics. 

 

Figure 30. Modified map for testing.  Map from Figure 29 with only terrain. 

 Without LOD With LOD 

FPS 39-40 49-50 

Terrain polygons 8,406 25,650 

Total polygons 11,376 28,626 

Table 1. Modified map for testing. Map from Figure 29 with only terrain. 

There was over a 10% increase in frame rates per second. Despite removing all of the 

objects from the scene, there were still decoration layers and multiple textures associated 

with the terrain that limited the increase to only being 10% as another map of the same 

complexity and size with only one texture showed an increase in frame rate near 30%.  

 A very large terrain map was created in order to saturate the graphics processor. 

This was done to test whether the terrain LOD made any significant difference for frame 

rates without any possibility of interfering factors. Figure 31 shows a ground perspective 

view from the center of the terrain and an aerial view of the entire map. Table 2 contains 

the statistics for the map. 
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Figure 31. Large terrain map (km2). 

Ground perspective Without LOD With LOD 

FPS 4.642 8.862 

Terrain polygons 511,616 129,320 

Total polygons 513,344 131,044 

Time to render 174 ms 99.7 ms 

Aerial view Without LOD With LOD 

FPS 1.372 2.326 

Terrain polygons 2,093,058 522,242 

Total polygons 2,094,792 523,970 

Time to render 720 ms 405.2 ms 

Table 2. Large terrain map (km2). 

 The frame rate for the ground perspective was increased by 48% and the polygon 

count was decreased by 75% with LOD active. The aerial view FPS increased by 41% 

with a polygon decrease of almost 75%. These figures prove that the terrain LOD did 

provide value in that it allows for larger terrain sets to be created without significantly 

losing any frame rates. The time to render the terrain in both cases decreased over 40%. 

E. SUMMARY 

This chapter provided an analysis of the terrain LOD method implemented for this 

work. Analysis of the information gathered supported that the implemented LOD system 
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did provide for interactive frame rates, while allowing for more complex world 

environments. 
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VI.  HEAD TURN FREQUENCY PREDICTABILITY 
The ability to predict the turning frequency of a player in a first ground, 

perspective environment would assist in refining a terrain LOD system. A prediction 

algorithm would control the swaps between the different resolutions for areas such as 

behind the player. Since the algorithm would know when the player would turn around, 

the LOD swap would occur just prior to the turn. In this manner, the algorithm would 

optimize the swapping of the different LOD’s. With this ability, level designers could 

develop large outdoor scenarios, or overlapping regions where portals provide viewable 

aspects of large-open terrain without any performance degradation. This chapter outlines 

a study performed to ascertain whether turn frequency could be predicted in a first 

person, ground perspective environment and thus refine not only terrain LOD, but also 

terrain generation. 

A. HYPOTHESIS 

The hypothesis for the experiment was that with increased map size and difficulty 

denoted by large unknown maps and enemy forces, the frequency for turning would be 

higher and the time between large significant turns would be lower. Another underlying 

hypothesis was that novice players would turn less as compared to experienced players, 

exhibiting an “everything in my current view must be what is important” mentality. With 

these two hypotheses, and with a possible trend in turn frequency and time, the idea was 

that prediction could be possible for predictive terrain generation. 

B. PREPARATION 

The Unreal Tournament first person shooter game provided the appropriate 

platform for the conduct of this study. Data collection involved the modification of only 

one function and this process was completely transparent to the participants. All data was 

stored in the game log until extracted by a Java program written specifically for this 

experiment. 

All participants performed the required tasks using the same Pentium 3, 1 GHz 

machine equipped with a GeForce 3 graphics card with 64 MB of memory. The display 

used was a Dell Trinitron 21 inch monitor. All users were provided with a mouse, 

keyboard and headphones. The only difference in the equipment between individual 
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players was that the participants were allowed to personalize the game controls prior to 

the experiment. 

C. EXPERIMENT 

The experiment involved the playing of three different game situations for 10 

minutes each in successive order with only about a brief two-minute break between each 

session. The first game was a DeathMatch, which means that every entity in the world 

attempts to eliminate all the other entities. The participant faced three combatants 

controlled by artificial intelligence (AI), referred to as “bots” in the game. Figure 32 

shows the map, “Morbias,” which was chosen because it is simple and easy to navigate.  

There were limited weapon choices in the scenario, and a player’s health could not be 

improved.  

The second game provided a team element in the form of Capture the Flag. The 

player had two bot teammates versus three bot opponents on the opposing team. The goal 

of the game is for each team to capture the opposing team’s flag as often as possible. 

Figure 33 demonstrates the “Command” map layout. There were the standard weapons 

and health packs throughout the arena. 

The third game was a more robust DeathMatch. The player faced eight bots in a 

larger and more complex arena.  Figure 34 shows the layout for “Tempest.” This map had 

all available weapons and health packs. 

Ten subjects were run through the experiment. All ten male participants were 

volunteer students and programmers associated with the Naval Postgraduate School. A 

brief questionnaire was administered followed by a game tutorial to establish a baseline 

of game and computer experience of the participants. Appendix A contains the 

questionnaire and associated data from all the questionnaires.  

Each participant, regardless of experience, entered game play against bots set at 

“Experienced.” On a scale of 1-8 with 1 being the easiest up to the hardest of 8, the bots 

were rated at 3. This was to provide a challenge to those familiar with first person 

shooters and Unreal specifically, without overwhelming those unfamiliar with Unreal or 

first person shooter games in general.  
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Figure 32. Deathmatch on map “Morbias”. 

 

Figure 33. Capture the flag on map “Command”. 
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Figure 34. Deathmatch on map “Tempest”. 

D. RESULTS 

A listener was placed to observe for drastic head turns each game click. The 

drastic head turn was established to be 5 degrees in any direction. Every time the user 

broke the threshold, the time and what was in the player’s field of view was recorded. All 

entries were then automatically parsed using a Java program written specifically to parse 

the collected data.  

Though “Tempest” was very large and more intricate than the other maps, it 

provided on average only 6.77% more turns than test 1 and 13% more than test 2. One 

possible explanation for the insignificant differences was training. Thirty minutes of 

game-play provided plenty of time for even novice players to become familiar with the 

game-play style and controls, thus developing techniques that would minimize the 

necessity for more frequent turns in test 3. One observation made from watching all the 

participants was that as the experiment continued for each, the trend was for players to 

search out an opponent and fight to the death and then continue searching for another 

opponent in a straight ahead fashion.  

Another explanation was that due to more opponents, the need for sweeping 

searches was minimized. The hostile bots always sought out an enemy, and as observed 

above, the participants also searched in a straight-ahead manner. This was most probably 
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due to the confined areas of the map. The confining walls on the left and right of the 

players’ avatar were visible and thus the player probably did not feel a need to look either 

left or right. Perhaps with a more open terrain the requirement for more rapid sweeps 

would have been more frequent and necessary. 

With the exception of subject 1, regardless of experience level, the data indicates 

no difference in the necessity for head turns between novice and experienced players. 

Subject 1 provided the only case in support of the hypothesis that novice players would 

tend to look straight ahead more frequently, avoiding head sweeps in fear of missing 

something. All other players turned with regular frequency during game-play.  

A significant note about the data was that almost 90% of the turns over threshold 

were due to tracking an opponent during a battle. As advised during the tutorial, Unreal 

bots exhibited the behaviors of a good deathmatch player. “A good deathmatch player is 

always moving, because a moving target is harder to hit than a stationary one.” Unreal 

bots constantly move to avoid being hit, and in order to kill them, the player also had to 

turn in order to maintain that bot in the center of the players’ field of view. In this 

manner, there was a predictive element in the turning frequency of the participants.  

 An expectation stemming from conversations with first person shooter enthusiasts 

was that players tended to make large and frequent head turns within very short amounts 

of time. However, the average turn radius across all players was 7 degrees for either 

direction during one game click. Though one participant did record a single turn of 180 

degrees, the data supported a notion that players did not make rapid swooping turns 

during game play. This revelation, along with the knowledge that players tended to track 

bots during game-play could possibly provide a prediction algorithm. 

E. SUMMARY OF EXPERIMENT 

Though predictive terrain generation would significantly enhance the performance 

of environments with large open areas, this study did not support its feasibility for a first 

person, ground perspective environment. The experiment did reveal that once a player 

was involved in a shootout with a bot, his turn frequency did become predictable since 

they tended to follow the bot’s movement.  And since a bot’s behavior was always 

known, a prediction algorithm could tie into the bot’s behavior.  
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 Though not conclusive, this study provided a good beginning for a possible 

predictive terrain algorithm. With predictive head turning, not only can an efficient 

terrain generation algorithm be developed, but more adept AI, game scenarios and 

implicit game functions that can learn from a players’ tendencies could be developed to 

create more immersive environments for entertainment and training. Clearly more in-

depth studies with greater variability in the subject population and interfaces need to be 

performed. 

F. SUMMARY 

 This chapter detailed the experiment performed to ascertain the feasibility of head 

turning frequency prediction as an intelligent terrain optimizing system. Chapter VII 

provides final conclusions and areas of possible future work in this area.  
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VII. CONCLUSIONS AND FUTURE WORK 
 This chapter illustrates the benefits of the LOD system this work produced. A 

summary of the work is followed by the benefits of this work and conclusions and 

recommendations. This chapter concludes with ideas for future work. 

A. CONCLUSIONS 

This work set out to add terrain LOD to an existing first person, ground 

perspective environment that dictated small terrain maps in order to maintain interactive 

frame rates. Most first person, ground perspective simulations and environments set strict 

constraints on the interaction that the user has with the terrain. Whether the restriction is 

to maintain a distance from the terrain as in flight simulators, or restricting the movement 

of the user to specific areas of the terrain map, the constraints are in place to maintain real 

time interaction with the terrain.  

A goal of the AGP was to develop large outdoor scenarios for their game-play. As 

such, there existed a requirement to alter the current terrain algorithm to allow for high 

interaction on the part of the user with large terrain sets. The developed terrain LOD 

system provides an opportunity for endless interaction with the terrain on behalf of the 

user by maintaining interactive frame rates.  

Employing the existing terrain engine as a basis for the LOD system proved 

intriguing and wearisome. First, the code was not very well documented. Discovering 

where to begin by sifting through hundreds of files and thousands of lines of code took 

time. Upon finding the terrain generation system, deciphering the system was equally 

time consuming. To assist future developers, comments were added to the terrain system 

in the process of this thesis.  

A drawback of the existing system was that it limited the options for developing 

an LOD system. As pointed out in previous chapters, because of its preprocessing of the 

terrain, game-time manipulation of the terrain was impossible and thus very limiting. 

However, reutilizing the existing code, which ran smoothly with the rest of the game 

engine, was far more an attractive proposition than completing reengineering the terrain 

system and its associations with the rest of the engine.  

As expectations of realistic virtual environments grow, the requirement for real 

time interactive systems will also grow. Vast, pristine terrain requires intelligent handling 
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in order to ensure that the user can effectively interact with it to ensure maintaining 

presence and immersion. An effective terrain LOD system, as the one provided in this 

work is, provides for the construction of large terrain maps for use in first person, ground 

perspective environments. 

B. FUTURE WORK 

 Though the LOD system developed for this work achieved its intended goals, it is 

not a panacea for terrain LOD. There exist many other avenues for expansion and 

improvement. This section will list some suggestions for future work.  

 1. Game-time Terrain Manipulation 

 Employing game-time terrain manipulation is one area for possible work. By 

effectively altering and manipulating the terrain at game-time such as geomorphing, all 

hysteresis could be avoided. The difficulty in implementing this scheme with Unreal is 

that the entire terrain engine would have to be reengineered to eliminate preprocessing. 

 2.  Multiple LOD 

 Because the maps used by the AGP were not vastly large, only one low-resolution 

level was implemented for this thesis. However, should much larger maps be required, 

more resolution levels would be required in order to maintain interactive frame rates. The 

work would involve not only expanding the current number of stitches, but also to ensure 

that the extra resolutions do not overwhelm the graphics memory.  

 3. Head Turning Prediction 

 Though the study presented in this work concluded that head-turning prediction 

was nearly impossible, it was very limited in scope and experimentation. A possible area 

of future work could be to expand that study to discover a means by which to implement 

a predictive terrain algorithm based on a user’s tendencies.  

 4. Limit Footprint 
 This possible area of work follows the multiple LOD work for efficiently 

utilizing the available graphics memory. As is, the current system keeps all the meshes in 

the memory until required for rendering. Should multiple LOD meshes be implemented, 

the burden on the memory could be overwhelming. Thus, efficiently caching the meshes 

as terrain paging does or some other method could be explored in order to limit the strain 

on memory.   
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